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ABSTRACT:  

In this paper, we have used the Dupire's equation to derive the volatility model when the asset 

price follows logistic Brownian motion. We have used the analysis of Brownian motion, logistic 

Brownian motion, derivation of Black-Scholes Merton differential equation using It
^
o  process 

and It
^
o’s  lemma and stochastic processes. We have also reviewed derivation of Dupire 

Volatility equation and used it's concept to derive a volatility model when the asset price follows 

logistic Brownian motion. 

 

Keywords: Volatility, Modeling, Brownian motion, differential equation and Dupire’s equation 

  

1 Introduction: 

The estimation of market volatility (or variance of returns of an asset) is a crucial issue in 

modern applied finance. The measure of volatility and good forecasts of future volatility are 

crucial for implementation, evaluation of asset and derivative pricing of asset. In particular, 

volatility has been used in financial markets in assessments of risk associated with short-term 

fluctuations in financial time-series. It is estimated as mean square deviation from trend pattern. 

Black-Scholes Merton Model (1973) published a landmark paper about option pricing and 

corporate liabilities. Not only did this specify the first successful option pricing formula, but it 

also described a general framework for pricing of other derivative instruments. Volatility has a 

key role to play in the determination of a risk and in the valuation of options and other derivative 

securities. The widespread of Black-Scholes model for asset prices assumes volatility is constant. 

Hull ( 2000) argue that volatility can be estimated by using historical data in the form of 

logarithms of asset returns which is referred to as historical volatility. A large number of models 

have been proposed to address the short comings of Black-Scholes model (Black and Scholes 

1973; Merton 1973) 
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2 Preliminaries: 

Wiener process is a particular type of Markov Stochastic process with mean change of zero and 

variance 1.0. If X (t) follows a stochastic process where  the mean of the probability 

distribution is and   is the standard deviation. That is, X (t) ~ N (  , ) then for Wiener process 

X (t) ~ N (0, 1) which means X (t) is a normal distribution with  =0 and  =1. Expressed 

formally, a variable Z follows a Wiener process if it has the following properties: 

PROPERTY 1: The change Z during a small period of time i 

Z =  t          2.1 

 where   has a standardized normal distribution;  (0,1) 

PROPERTY 2: The values of Z for any two different short time intervals of time,  t, are 

independent. That is, Var (Zi, Zj )=0,  i   j. It follows from the first property that itself has a 

normal distribution with Mean of Z=0, Standard deviation of Z= t  and Variance of Z=

t .  The second property implies that Z follows a Markov process. Consider the change in the 

value of Z during a relatively long period of time T. This can be denoted by Z (T)-Z (0). It can be 

regarded as the sum of the changes in Z in N small time intervals of length   (t), where  

N=
t

T


 

Thus  Z (T)-Z (0) = 



N

i

i t
1

 ,            2.2 

where the i (i=1,2,3.....N)  are distributed  (0,1). From the second property of Weiner process,  

i  are independent of each other. It follows that Z (T)-Z (0) is normally distributed with                                  

Mean =E (Z (T)-Z (0)) = 0, Variance of (Z (T)-Z (0)) = n = T thus, Standard deviation of (Z 

(T)-Z (0)) is T Hence Z (T)-Z (0) ~ N (0, T ). 

It
^
o process is a generalized Wiener process in which the parameters a and b are functions of the 

value of the underlying variable X and time t. An It
^
o process can be written algebraically as, 

dX =a(X, t) dt +b(X, t) dZ.                2.3 
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It
^
o lemma is the formula used for solving stochastic differential equations. It is a treatment of 

wide range of Wiener-like differential process into a strict mathematical framework. 

 

3 Estimation of Volatility: 

Black-Scholes Merton model is derived from Black-Scholes Merton differential equation. This 

model has been a breakthrough as far as predictions of asset prices are concerned. One of the 

major assumptions of Black and Scholes model when determining price of underlying asset 

(depending on the time t)is that the price of underlying asset follows a geometric Brownian 

motion with constant drift   and constant volatility   throughout the duration of a derivative 

constant; that is 

d St=  St +  St dZ       3.1 

 where Z is wiener process. There are several methods of estimating constant volatility; among 

them we have historical volatility, implied volatility. Recent studies have revealed that volatility 

of underlying asset is not necessarily constant during the life of an option, it may vary with time. 

 

4 Derivation of the Black-Scholes-Merton differential equation: 

We consider stock price process that follows a geometric Brownian motion as follows: 

        dS=  S dt+  S dZ,         4.1 

where   (linear drift rate) and   (volatility) are constants and Z is a Wiener process. Suppose 

that G is the price of a call option or other derivative contingent twice differentiable in S and 

once on t. The variable G must be of some function of S and t. Hence from It
^
o process of the 

form; 

SdZ
S

G
dtS

S

G

t

G
S

S

G
dG 



























 22

2

2

2

1
,     4.2 

 We therefore seek to eliminate the Wiener process. We choose a portfolio of stock and the 

derivative. The appropriate portfolio is  

-1: derivative 
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+
S

G




: Shares 

The holder of this portfolio is short one derivative and long an amount 
S

G




 of shares. This 

implies that portfolio holder will have a long option position and a short option position in a 

quantity related to shares. We define   as the value of the portfolio. By definition,  

S
S

G
G




        4.3 

Taking  , S  and G  as the changes in  , S  and G  in small interval t , equation  (4.3) is 

given by 

S
S

G
G 




        4.4 

 

Substituting the discrete version of equations (4.1) and (4.2) into equation (4.4) we obtain

)()
2

1
( 22

2

2

ZStS
S

G
ZS

S

G
tS

S

G

t

G
S

S

G


































   4.5 

This simplifies to 

tS
S

G

t

G

















 22

2

2

2

1
           4.6 

The portfolio is risk-less during the time t  because (4.6) does not involve Z .The assumptions 

of Black-Scholes-Merton differential equation  imply that the portfolio must instantaneously earn 

the same rate of return as other short-term risk free assets. If it earned more than this return, 

arbitrageurs could make a risk-less profit by borrowing money to buy the portfolio. If it earned 

less, they could make a risk-less profit by shortening the portfolio and buying a risk-less assets. 

This change in the value of the portfolio must therefore be the same as the growth we could get if 

we put equivalent amount of cash in a risk-free interest bearing account using the non-arbitrage 

principle. It follows that 

tr           4.7 

where r, is the risk-free interest rate. Substituting from equations (4.3) and (4.6) into (4.7) we 

obtain 
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tS
S

G
GrtS

S

G

t

G






























 22

2

2

2

1
  

So that 

rG
S

G
S

S

G
rS

t

G















2

2
22

2

1
      4.8 

Equation (4.8) is the Black-Scholes-Merton differential equation. 

 

5 Derivation of Dupire Volatility equation: 

In the recent work, research by Dupire (1994), Derman and Kani(1994) and Rubinstein (1994) 

has concentrated on building models for price process of S(t) that can fit a certain observed 

pattern of volatility. In this section we summarize the work of Dupire as follows; The aim of the 

model is to show unique volatility function   (S, t) that is assumed that at a given time t, prices 

of European call option, for all maturity time T  t and all exercise price E > 0 can be observed. 

The observed option price is consistent with the price of dividend yielding the following 

equation; 

    d S(t)=   (t)-y(t))S(t) dt+   (S, t)S(t)d Z(t),            5.1 

where   (t) is the drift term of the underlying asset, y(t) is the dividend yield of the asset,   (S, 

t) is the volatility and Z(t) is the standard Wiener process. We then have the Black-Scholes 

Merton differential equation for any claim h(S, t) given by 

0),()(
),(

))()((
),(

),(
2

1),(
2

2
22 














tShtr

S

tSh
Stytr

S

tSh
StS

t

tSh
    5.2 

where r(t) is the risk-free interest rate in the market and not   because when it comes to price 

derivatives, it is the risk-free drift r, that matters and not the real drift   . The t dependence of 

r(t) is the ``term structure" of interest rates. Considering a European call option at time t, priced 

at a discounted expectation where P (t, T) denotes the price at time t, of a risk-zero coupon 

bonds, then it can be shown that 

)(/)(),(),( TSKTSExpTtPtSh         5.3 

Hull (2000) 
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Defining ))(/()(( tSTS  as the probability density function of condition on )(tS  then (5.2) can 

be written as 





E

TdStSTSKTSTtPtSh )())(/)(())(max(),(),(       5.4 

If we differentiate (5.3) twice with respect to K, we get 

1

2

2

),(
),(

))(/)(( 




 TtP

K

tSh
KtSTS        5.5 

(Breeden and Litzenberger 1978). 

 Considering the use of Kolmogorov's forwarding equation for transitional probability density 

function ))(/()(( tSTS the Fokker-Planck equation on  

)()(),()(),()( tdZtStSdttStStdS          5.6 

We have 

0))/()(()),((
)(

),(
))(/)(()),((

)(

),(

2

1))(/)(( 2

2

2















tTSTTS

TS

tSh
tSTSTTS

TS

tSh

T

tSTS



   5.7 

The function ))(/()(( tSTS is the density of random variable )(TS and time T conditional on the 

initial )(tS value and the process (5.6). Dupire (1993) re-stated equation (5.7) regarding ),( tSh  

as a function of strike price K . With differentiation taken with respect to K  , and with drift and 

volatility functions evaluated at K   (because the density function in equation (5.5) is expressed in 

terms of K  ). Equation (5.7) can be re-written as 

0)]())()([()](),([
2

1 22

2

2















KKTyTr

K

h
KKTK

K

h

T

K
     5.8 

Using equation (5.5) and substituting for )(K in the first term of (5.8) we get 

0)]())()([()](),([
2

1
)](),([ 22

2

2

2

2
1 










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Using chain rule to differentiate the first term in (5.9) with respect to T and expand we have
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            5.10 

Integrating once, substituting for )(K  and multiplying by ),( TtP  we have 
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where T  is constant of integration. Integrating again with respect to K  we get  
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where T  is a constant of integration relating to the second integration. Rearranging and 

simplifying we have 
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Following Dupire (1994) it is assumed that all the terms in the left hand side of (5.13) decay 

when K  tends to +  so that 0 TT  . Hence (5.13) becomes 

0]),([
2

1
)()]()([

2

2
22 














K

h
KTKhTy

K

h
KTyTr

T

h
     5.14 

Where 0K .This is the price of a European option expressed as a function of T and S (for fixed 

t  and s ). Rearranging equation (5.14) we get the volatility function 

     5.15 

 

 Equation (5.15) defines the value of volatility of an option at timeT  and strike price K  and is 

referred to as Dupire volatility equation. 

 

6 Estimation of Volatility when the Asset price follows Non-linear Brownian 

motion: 

The non-linear Brownian motion is build on Walrasian price-adjustment model by introducing 

excess demand and applying them in the framework of Walrasian-Samuelson price adjustment 

mechanism to obtain a deterministic logistic equation. In this section we derive a volatility model 
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when the asset price follows non-linear Brownian motion at any given time t , with the price of 

the asset )(tS  is less than equilibrium price *S  giving the following equation. 

)())()(())()(()( ** tdZtSStSdttSStStdS         6.1 

where )(* tSS  ; *S  is the equilibrium price, )(tS  is the price of the asset or security,   is the 

function of growth rate and   is the volatility while )(tdZ  is the standard weiner process. 

Applying the Black-Scholes Merton differential equation for any claim of asset value ),( tSV . 

From equation 4.8 we have.  
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where )(tr is the risk-free interest rate in the market and not  .  Using the Black-Scholes 

equation, equation (6.2) can be expressed as 
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where ),0( Tt  , 0* S ; )0),max((),( * SStSV  . Where )(tr risk-free interest is rate when 

*S and r  are constant then the European put option is expressed as a function of T  with 

volatility   being sufficiently regular. Using standard arguments, it can be shown that call 

option at time t  will be priced at the discounted expectations. 

)(/),(),( * TSSSExpTtPtSV          6.4 

In which factor ),( TtP  denotes the price at time t  of a zero-risk coupon bond. Relying heavily 

in the transitional probability function ),),(,( *STtSt  for a risk-neutral random walk. Then we 

have 
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Differentiating (6.5) twice with respect to S  we get 
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Using Kolmogorov's forward equation for transitional probability density function, the Fokker-

Planck equation on (6.1) becomes 

0))/()(())()(()),((
)(

),(

))(/)(())(()()),((
)(

),(

2

1))(/)((

*

2*22

2

2

















tTStSStSTTS
TS

tSV

tSTStSStSTTS
TS

tSV

T

tSTS






   6.7 

Using the spirit of Dupire (1993) regarding V  as a function of strike price S  in equation (6.7). 

With differentiation taken with respect to S , and the drift and the volatility function evaluated at 

S  (because the density function in equation (6.5) is expressed in terms of S ). Equation (6.7) can 

be re-written as 
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Using equation (6.6) and substituting for )(S  in the first term of equation (6.8) we get 
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Using chain rule to differentiate the first term in (6.9) with respect to T  and expand we have
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Integrating once, then substituting for )(S  and multiplying by ),( TtP  we have 
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where T  is constant of integration. Integrating again with respect to S  we get 
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where T  is the constant of integration relating to the second integration. Rearranging and 

simplifying we have 

TT
S

V
SSSTSVTr

S

V
SSSTr

T

V
 














])(),([

2

1
)()]()([

2

2
2*22*   6.13 



            IJMT                  Volume 2, Issue 1                    ISSN: 2249-1058  
__________________________________________________________         

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories 
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A. 

International Journal of Marketing and Technology 
 http://www.ijmra.us                                             

 
47 

January 

2012 

Using the spirit of Dupire (1994) where it is assumed the all the terms in the left hand side of 

equation (6.13) decay when S  tend to   so that 0 TT  . Hence (6.13) becomes 
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Rearranging equation (6.14) we have 
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7 Conclusion: 

In this paper, we have developed a mathematical model to be used in estimating volatility when 

the asset price at time t follows non-linear Brownian motion rather than when the asset price at 

time t follows linear Brownian motion. This model has also reviewed the evidence of non-

constant volatility as opposed to the wide spread Black-Sholes model for asset prices that 

assumes that volatility is constant. 
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